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Abstract

We consider the essence of the well-known discussion between Bohr and Einstein (1935)
which concerned the completeness of quantum mechanics. If one followed Bohr, then the
wave function would give the probability description of an individual particle. How-
ever, Einstein considered the wave function as an instrument for describing the statistical
ensemble of identical particles-solitons. On the other hand, Wiener found the special
a-representation of quantum mechanics for which the wave function appeared to be an
element of the random Hilbert space with the normal dispersion. This fact proves the
equivalence of Bohr and Einstein positions, the central limiting theorem being taken into
account. Moreover, we show that within the scope of the Skyrme—Faddeev chiral model
particles can be considered as self-gravitating solitons. Therefore, we infer that for island
systems with the plane asymptotic space-time quantum mechanics ensues from Einstein
gravity equations.

Introduction

Let us begin with an old discussion (1935) between Bohr and Einstein [1,2] concerning
completeness of quantum mechanics. As well known, Bohr assumed that the wave function gave
the probability description of an individual particle. According Einstein, the wave function
described the quantum statistical ensemble of identical particles. Thus, the suggestion on
probability description appeared to be common both for Bohr and Einstein. Moreover, Einstein
suggested a tremendous program for geometrizing physics and considered quantum particles
(electrons or photons) as pulsating solitons, that is clots of some fundamental field satisfying
nonlinear equations.

Later on Wiener showed [3] the equivalence of these points of view. He constructed the
special representation of quantum mechanics where the wave function appeared to be an element
of a random Hilbert space with the Gaussian dispersion. Nowadays this representation is known
as the stochastic integral by Wiener—Ito—Stratonowich. However, the approaches by Wiener
and Einstein prove to be also equivalent [4] since the Wiener’s wave function can be represented
as the sum of large number of solitons with random phases. As well known, in accordance with
the central limiting theorem [5], the latter sum behaves as a Gaussian random variable.

Brioschi spinors and topological solitons

Now it is worth while to stress the important contribution in realizing the Einstein’s program
made by the Italian geometrician Francesco Brioschi (1824-1897). He used complex projective
coordinates (16-spinors) to study the 8-dimensional space geometry[6]. It can be shown that
Brioschi 16-spinor solitons prove to be stable within the scope of the Skyrme—Faddeev chiral
model(SFCM) [7,8]. This fact permits one to construct the wave functions of quantum particles
considered as self-gravitating asymptotic solutions to field equations.

The equivalence of Bohr and Einstein approaches becomes evident if one introduces a soliton
solution u(¢, r) = u(x) to some nonlinear equation (with linear Klein—Gordon part) describing



a massive extended particle. Let us also consider the de Broglie plane wave
) = Aexp|—wt +1(kr)] = A exp(—ikx) (1)

for a free particle with the energy w, the momentum k and the mass m, where the relativistic
relation m? = k? = w? — k? determines the soliton’s size £, = m ™!, with the natural units being
h = c¢=1. It will be shown that the wave (1) can be represented as the sum of solitons located
at the nodes d of a cubic lattice with the spacing a >> {:

Y= uft,r+d). (2)
d
The result (2) follows from the asymptotic behavior of the soliton in its tail region:

u(z) = / d*k exp(—ikx) g(k) §(k* — m?). (3)
Inserting (3) into (2) and using the well-known Poisson formula [9]:

S explu(kd)] = (2r/a)° 3(K),

one derives from (1) that A = (27 /a)3g(m)/(2m).

Wiener approach to quantum mechanics

As a result, the de Broglie wave (1) describes an ensemble of particles-solitons, though in
idealized approximation, with the solitons’ phases being matched and the lattice being cubic.
However, in a realistic situation the solitons’ phases appear to be random as well as the dis-
position of lattice nodes. Under these conditions, as well known, the central limiting theorem
is valid [4,5]. It means that any large collection of solitons behaves as a Gaussian random
quantity. Due to this fact, the wave function proves to be an element of the random Hilbert
space with the scalar product (11, 19) = M(1)]1)2), where the mathematical expectation M is
taken over random parameters of solitons.

Precisely this interpretation of the wave function was suggested by Wiener [3] who considered
a real Brownian process z(s, o) with the evolution parameter s € [0, 1] and the trajectory index
a € [0,1], the latter one determining the correlation

1
/ daz(s,a) x(s',a) = min(s, s'). (4)

0
For quantum description of a particle in R?* Wiener introduced the complex Brownian process

2(sla, ) = 272 [a(s, a) +y(s, B o, B € [0,1],

and used the mapping R® = [0, 1] for constructing the stochastic representation of the wave
function

(o, Bl) = / dz(s|, B) (s)
s€[0,1]

in the form of stochastic integral by Wiener—Ito—Stratonowich [10]. Moreover, Wiener proved,
on the basis of the correlation (4), the unitarity of this representation transform:
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The SFCM and correspondence with quantum mechanics

Let us now show that within the scope of the SFCM in 16-spinor Brioschi realization the
correspondence with quantum mechanics retains. To this end, let us consider the main part of
the spinor Lagrangian density for the SFCM [7,8]:
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where J, = @%\Il, D = WVZ’JVV“\I/, V, = 0,—T,, T, is the spinor affine connection, V¥ is the
Brioschi 16-spinor, K = R, R"°7 /48 is the so-called Kretschmann invariant constructed with
the help of the Riemannian curvature tensor, and ¢p; = [c¢*/(hG)]"/? is the Planckian length.
Here it should be also included the gravitational Lagrangian coinciding with the Einstein’s one.

Let us now suppose the existence of the soliton-like solution with the mass M and asymp-
totically plane space-time. It means that this soliton configuration behaves as an island-like
excitation of the vacuum ¥, = const, the condition of spontaneous symmetry breaking being
fulfilled:

ViU, = 1.

Let us also consider a small perturbation & of the vacuum at large distances r from the soliton
center. Therefore, at » — oo one finds the development ¥ = Uy + &, & — 0, that permits one
to estimate I', and invariants in (5) through the Schwarzschild metric:
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Inserting (6) into (5) and using the substitution £ = k Uy, one gets the following linear equation
for the real scalar multiplier k£ = k* :

(O-m* k=0, (7)

where m = Mc/h.

Conclusion

As follows from (7), the equation for the vacuum excitation £ coincides with that of Klein—
Gordon and also with the Schrodinger equation in the non-relativistic approximation. It means
that the vacuum excitation & plays the role of the wave function in the special stochastic
representation [8] It should be also underlined that the vacuum spinor Wy takes in general some
complex values, the same being valid for the excitation &. In particular, for the substitution
& =1k ¥y one finds the wave equation LI = 0, describing massless perturbations of the vacuum
(photons) [7]. Finally, it should be noticed that the proper gravitational field of particles
plays an important role in our approach since the wave-particle duality principle of quantum
mechanics has the gravitational origin.
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