
Application of Lagrangian mechanics to the analysis of particle 
dynamics in a gravitational field

V. B. Belayev
V. G. Khlopin Radium Institute, Saint-Petersburg, Russia

wbelayev@yandex.ru

ХХIV International Meeting Physical Interpretations of Relativity Theory

PIRT- 2025 07-10 July 2025

mailto:wbelayev@yandex.ru


Introduction

• In the general theory of relativity (GR), the definition of the momenta of material and light-like particles moving in
curvilinear space-time, and the forces acting on them, aims to find relativistic corrections to Newton's theory of
gravitation for a weak gravitational field. If the second derivatives of the coordinates along the path [1-3] are considered as
components of the 4-vector of the force acting on a material particle of a unit mass, then in the Newtonian limit, the value
playing the role of the passive gravitational mass turns out to depend on the direction of motion of the particle [4]. The
same is true for a photon, if the second derivatives of coordinates are identified with the 4-force by an affine parameter,
as which the coordinate time is chosen.

• Another approach is the choice of the Lagrangian of the particle, the definition of generalized forces as its partial
derivatives with respect to the coordinate in accordance with Lagrange mechanics. [5-8]. In GR, the physical velocities of
particles are associated with the components of the contravariant 4-velocity vector. Therefore, the physical force is aligned
with the upper index vector associated with the generalized force vector. The energy and momenta of particles are
considered as the components of the contravariant 4-vector of energy-momentum, as is done in [1] for a particle moving
in the Minkovsky space-time.

• In the Fock proof [9] of the light motion along geodesics, the time component of the covariant 4-velocity vector is taken as
the Hamiltonian. Application of the variational principle of the energy stationary integral (PESI) to the motion of a light-like
[5-8] particle in a gravitational field does not lead to a violation of the isotropy of the light path. In the generalized
Fermat's principle [10], a variation of the integral of the time component of the 4-velocity vector is used and gives the
trajectory of light movement that coincides with the geodesic.



Equations of Lagrange mechanics

In the general theory of relativity, a four-dimensional pseudo-Riemannian space-time with 

coordinates ix  and metric coefficients ijg  is considered, the interval in which is written in the 

form 

  
2 i j

ijds g dx dx= .                                                                                                                        (2.1) 

The 4-velocity vector of the particle is denoted as /i iu dx d= , where   is the variable 

parameter. We obtain the equations of its dynamics in general form. 

     The particle Lagrangian corresponds to the covariant generalized momenta 

 =i i

L
p

u




                                                                                                                                    (2.2) 

and generalized forces 
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The particle motion is determined by Hamilton's principle of stationary action 0S =  at 
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=   ,                                                                                                                            (2.4) 

where 0 , 1  are the values of the parameter at the points that are connected by the desired 

trajectory of motion. The extremum condition leads to the Euler-Lagrange equations 

0
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Taking into account the expressions for generalized momenta (2.2) and forces (2.3), these 

equations are rewritten in the form 
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Equations of Lagrange mechanics

The Lagrangian is chosen [5] so that contravariant momenta bind to the physical energy and 

momentum of the particle 

=j jp g p  ,                                                                                                                                (2.7) 

and the gravitational force acting on it is mapped to associated with (2.3) vector 

=l lF g F  .                                                                                                                                 (2.8) 

Passing to them in equations (2.6), we find 
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Multiplying these equations by kg  and summing over the twice occurring index  , we obtain 

= .
k

ik k l i

l

gdp
F g u p

d x






+


                                                                                                         (2.10) 

The presence of the second term on the right side reflects that in the gravitational field not only 

the 4-momentum of matter, but the 4-momentum of matter together with the gravitational field is 

stored (see [1] § 96). Its components express the rate of change of the energy and momentum 

acquired by the gravitational field when a particle moves in it 
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                                                                                                                 (2.11) 



Equations of Lagrange mechanics

Integration of this quantity over gives the energy and momentum received by the gravitational 

field at a certain interval of its trajectory. As a result, equation (2.10) can be written in the form 

 = .
k k

k dp dp
F

d d 
+                                                                                                                       (2.12) 

It follows from the laws of conservation of energy and momentum that the force acting on a 

particle is equal in magnitude and opposite in sign to the force acting by the source of gravity 

from the side of the particle. This is equivalent to fulfilling Newton's third law. 



Dynamics of the material particle

Let us consider the dynamics of a material particle [5]. The Lagrangian of particle with a rest 

mass m  is as follows 

= ,i j

m ijL cm g u u                                                                                                                        (3.1)  

For material particles, the parameter   coincides with the interval: s= . The physical energy 

and momentum of the particle are associated with contravariant momenta (2.7), which take the 

form 

                                                                                                                                 (3.2) 

This choice is because only in this case the components of the momentum 4-vector coincide in 

sign with the components of the 4-velocity vector. The first component determines the energy of 

the particle 
1E cp= .                                                                                                                                      (3.3) 

The gravitational force acting on a material particle, in view of (2.8), is determined by the 

formula 

  

     According to the general theory of relativity, the motion of a material particle is determined 

by the equations of the geodesic line. For a material particle with the Lagrangian (3.1), they can 

be obtained from Hamilton's principle of stationary action [9] and are identical to equations 

(2.6). 



A material particle in the Schwarzschild field

The gravitational field of a spherical body outside its source in spherical coordinates is described 

by the Schwarzschild metric 
1
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where constant 
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The coordinate system is chosen so that the motion of the particle occurs in the plane 
2


 = . 

Equations (2.6) for the time-like interval with the Lagrangian (3.1) yields 
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Dividing equation (4.4) by time velocity (4.3) gives 
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where  , A  are constants. 



A material particle in the Schwarzschild field

     For world lines with unlimited r  value   determined by radial velocity at infinity r V=  and 

will be 
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If the trajectory of the free-moving particle is such that the radial coordinate has a finite extreme 

value extr , then equation (4.7), due to the condition ( ) 0extr r =  has solution 
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For radially unbounded trajectories having an axis of symmetry, the following equality holds: 

21  = . 

     Substituting the found components of the 4-velocity vector into the expression (3.4), we find 

the only non-zero component of the gravitational force vector acting on the material particle: 
2 2 2

2

2 3

1
= 1 .

2 2

c m r cA
Q

r r r r

  



   
− + −   

−   
                                                                                   (4.10) 

With weak gravity, unlimited radial motion ( 0A= , 
1 = ) and 2 2/ << /r V c   it is reduced to 
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2

2 2 2
= .

2

c m c V
Q

r c V

  +
−  

− 
                                                                                                          (4.11) 



A material particle in the Schwarzschild field

     However, when considering non-radial movement ( 0A ) to avoid the appearance of a 

fictitious force component caused by using a spherical coordinate system, it is necessary to use an 

isotropic shape of the Schwarzschild metric in rectangular coordinates ( , , , )ct x y z . It can be 

accessed using the transformation  
2

= 1
4

r r
r

 
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cos cos , cos sin , sinx r y r z r    = = = ,                                                                    (4.13) 

 
which yields  
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We will consider motion in a plane 0z =  and look for the force acting on a particle at a point with 

coordinates ( , ,0,0)ct x  corresponding to 0 = =  in a spherical frame of reference. Plane 

coordinate transformations 

cos , sinx r y r = =                                                                                                       (4.15)  

at the point under consideration correspond to nonzero spatial components of the 4-velocity vector 

in a rectangular coordinate system 
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at s =  for a material particle. Transformation (4.12) implies 
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A material particle in the Schwarzschild field

In view of the covariance of the geodesic equations, one can pass from their solutions for the 

Schwarzschild metric in spherical coordinates (4.3) - (4.7) to the solution for the metric (4.14) by 

making transformations (4.12) - (4.13) and (4.16). As a result, we find nonzero components of the 

4-velocity vector: 
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Substituting the obtained components of the 4-velocity vector into the expression for force (3.4) 

gives its only non-zero component 
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A material particle in the Schwarzschild field

This expression does not depend on the constant A , if the particle motion corresponding to 

constant   (4.12). In weak gravity, for 2 2/ << /r V c  and, component 2

restQ  coincides with the 

expression for the force in spherical coordinates during radial movement (4.15). It is Newton's 

law of gravity with a passive gravitational mass of a material particle  
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−
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    However, in the general case, due to the noncovariance of the force vector (3.4) during the 

transformations of coordinates (4.16), (4.17) in the formula for the force in the Schwarzschild 

field in spherical coordinates (4.14), the resulting expression does not coincide with (4.25) for 

the radial motion of the particle. As an example, we consider the gravitational force acting on a 

stationary material particle. The constants 0A= , 
2 =  and the distance from the center 

extr r=  

correspond to this case. The nonzero component of the force vector (4.14) takes the form 
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and the component (4.25) obtained for the metric in isotropic rectangular coordinates will be 
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Substitution of (4.16) in this expression excluding small quantities of order higher than / r  

yields 
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Therefore, the analogy with Newtonian gravity and the passive gravitational mass of a material 

particle can only be talked about in the limit of weak gravity. 



A special case of a system consisting of two moving bodies

We study a system of two bodies A and B with the same mass M , which move in opposite 

directions in the coordinate frame ( , , , )K t x y z    =  with the velocities v  and v− . It is assumed 

that at the time 0t =  the distance r  between them can be neglected to determine the gravity 

created by this system in the considered area. 

    In weak gravity, the metric (4.14) in an approximate form becomes the following: 
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r r

    
− − + + +   

   
                                                                          (5.1)           

We apply the Lorentz transformations 
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to it under the condition 2 2/ << /r v c  . This condition means that the distortions of space and 

time caused by the presence of the Lorentz factor will be an order of magnitude greater than that 

caused by gravity. Therefore, the influence of gravity on the Lorentz transformations in this case 

is insignificant and they can be applied to the metric (5.1). Transformation of coordinates at 
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yields 
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A special case of a system consisting of two moving bodies

In associated with bodies reference frames 
AK , 

BK  the gravity of each of them separately is 

described in the corresponding frame by the metric (5.1). Let us pass from these coordinate systems 

to K  , using the Lorentz transformations at 

v v=                                                                                                                                            (5.5) 

and 

.v v= −                                                                                                                                         (5.6) 

If we represent metric coefficients in the form ij ij ijg h= + , where ij  correspond to the 

Minkovsky metric, then with weak gravity, the ratio n

ij ij
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after substitutions (5.5) and (5.6) into the metric (5.4), we find path interval in the vicinity of 0t =  

in a two-body system 
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at 1 2 = . 

    To search for the acceleration of a material particle at rest in the reference frame K   the 

equations of geodesics 
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are used with Christoffel symbols 
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A special case of a system consisting of two moving bodies

Multiplied by a coefficient 2c m , the right part of this expression will coincide with the 

gravitational force (3.4), since a stationary particle does not transfer momentum (2.11) to the 

gravitational field:  

0.
kdp

ds
=                                                                                                                                    (5.10)      

Equations (5.9), disregarding small quantities of a larger order, yield coordinate accelerations 
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If the spatial radius vector of the particle is perpendicular to the line of motion of the bodies 

( 0x = ), the result corresponds to Newtonian gravity with an active gravitational mass of a 

material particle 
2 2

1 1 2 2
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−
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with 1 2M M= . At v V= , this formula is identical to the relation between the rest mass of the 

particle and its passive gravitational mass (4.26). The presence of the Lorentz factor as a 

coefficient in acceleration along the coordinate x  is because the movement of the particle is 

considered in the reference frame, relative to which the sources of gravity move along this 

coordinate. 



PESI for the photon motion

To determine the dynamics of a photon in a gravitational field, we will use PESI [5-8]. Interval 

in pseudo-Riemannian space-time with metric coefficients 
ijg : 

2 i j

ijds g dx dx=                                                                                                                            (6.1) 

after substitutions 
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The condition 0=ds  corresponds to the motion of light. With 11 0g  , the variable   is given 

by the expression 
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where   take the values ±1 and 4-velocities iu  are determined provided that   is an affine 

parameter. Further, we will consider variations near 1= , to which the equality ij ijg g=  

corresponds. If 
11 0g =  and condition 1 0pg   is satisfied for at least one p , then it turns out 
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where k  takes on the values 2,3,4. 



PESI for the photon motion

 The Lagrangian of a freely moving particle is chosen as 

L = − .                                                                                                                                      (6.6) 

For both values (6.4), (6.5), the covariant generalized momenta (2.2) and forces (2.3) take the form 
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The chosen Lagrangian corresponds to the ratio 

L
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u







= −


                                                                                                                           (6.9) 

being the integral of motion [11] and, accordingly,   will be the energy of the system combining 

the light-like particle and the gravitational field given by the metric (2.1). 

   The equations of motion are found from Hamilton's principle of stationary action (2.4), which, 

in view of (6.6), can be written in the form 
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The energy   is non-zero, its variations leave the interval light-like. The equations of motion will 

be Euler-Lagrange equations (2.5).  



PESI for the photon motion

The contravariant vector of generalized momenta is written as 

1

1

1
p u

u u
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Physical energy and momenta of photon with frequency   in Minkowski space-time with affine 

parameter 
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form contravariant 4-vector of momenta ( / )i ih c u = , where h  is the Planck constant. For 

arbitrary affine parameter it is rewritten as  
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
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And in pseudo-Riemannian space-time similar energy and momenta of the photon will be put in 

line with the components of the contravariant vector of momenta. A certain fixed value of the 

photon’s frequency 
0

  is given by the corresponding equality 
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Comparing expressions for p  (6.11) and i  (6.13), we obtain  
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PESI for the photon motion

     The Lagrangian (6.6) corresponds to a particle with unit energy. For a photon, it is as follows: 

0
ph

h
L L

c


= .                                                                                                                             (6.16) 

 In this case, gravitational forces acting on a photon 

0

l lQ h F= .                                                                                                                              (6.17) 

 are assigned to the components of the associated vector of generalized forces 

1

1

1
= .

2

ijk k i j
g

F g u u
u u x








                                                                                                          (6.18) 



Consistency of the PESI for the photon and the generalized Fermat principle 

   The Fermat principle for a stationary gravitational field [1,12] is formulated as follows: 

( )1

11

1 1
0k

kt dl g dx
c g

 = − = ,                                                                                                  (7.1) 

where dl  is element of spatial distance along the ray: 

1 12

11

p q p q

pq

g g
dl g dx dx

g

 
= − 
 

.                                                                                                      (7.2) 

Denoting  

( )1

11

1 k

kdf dl g dx
g

= −                                                                                                                (7.3) 

and comparing this expression with (6.4), for 1=  for 3 we write 

1df
u

d



= .                                                                                                                                  (7.4) 

Therefore, variation of integral (7.1) is equivalent to variation 
1

0

1

FS u d





 =  .                                                                                                                       (7.5)  

   The generalized Fermat principle [10] extends this approach to non-stationary metrics. It applies 

the Pontryagin minimum principle from the theory of optimal control. Solutions of the resulting 

dynamic equations 
1Q u=   ,                                                                                                                                     (7.6) 

1
= 0

q q q

d Q Q Q Q

d x x x x

    
− − 

    
                                                                                                  (7.7) 

are isotropic geodesics. 



Consistency of the PESI for the photon and the generalized Fermat principle 

We prove that these equations are identical to the Euler-Lagrange equations (2.5) for the 

Lagrangian (6.6). The function Q  coincides with the expression for the derivative /df d  

obtained from equation (7.3), provided that the metric coefficients also depend on time. Therefore, 

from equation (7.4) follows the expression for energy 

 
1

Q

u
 = .                                                                                                                                     (7.8) 

 In view of (6.11), equations (2.5) for the spatial coordinates yield 

( )

1

21 11

1 1 1
= 0.

q q q

d Q Q du Q
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For the time coordinate ( 1 = ), from the Euler-Lagrange equations in the form (2.6) for 

generalized momenta (6.7) and forces (6.8), equation 

0
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1
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=



+ jiij

uu
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.                                                                                                            (7.10)  

follows. Comparing it with following from (2.3), (6.6) and (6.8) relation 
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in view of (7.8), we obtain 

( )
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2
1 1

1 1
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du Q u Q
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d x x
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=

 
                                                                                       (7.12) 

Substituting this expression into equations (7.9) and multiplying them by 1u  gives equations (7.7). 

That is, the identity of the equations obtained using the generalized Fermat principle and PESI for 

a light-like particle is proved. They correspond to the variational principles of classical mechanics. 

Due to the equivalence of solutions obtained from the first principle to isotropic geodesics, the 

solutions following from the second principle are also equivalent to them. Compared to Fermat's 

principle, PESI gives a system that has one more equation. This makes it possible to uniquely 

determine the affine parameter and the energy-momentum vector of the particle. 



General form of expression for force

Equation (2.12) for the force acting on a photon (6.18) takes the form 

1

1

1
.
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k
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                                                                                   (8.1) 

Let us change the affine parameter 
1

1 .d d u u =                                                                                                                         (8.2) 

The expression for momenta (6.11) takes the form 

,p u =                                                                                                                                    (8.3) 

where 4-velocity is defined as 
dx

u
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= . Substitution (8.2) into expression (8.1) yields 
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The right side of this formula coincides with the force (3.4) acting on a material particle of unit 

energy. It is covariant for linearized metrics. 



Photon dynamics in the Schwarzschild field

Let us consider the dynamics of a light-like particle in a static centrally symmetric gravitational 

field described by the Schwarzschild metric (4.1). Generalized momenta (6.7) for cyclic 

coordinates t ,   are constant motions 

cdt
B

d
= ,                                                                                                                                      (9.1) 
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 In view of (6.11) and (6.15), the value of the photon energy 
1

phE с=                                                                                                                                     (9.3) 

for 1B =  is 0 0phE h=  away from the center of gravity. Considering the motion in the plane

/ 2 = , we obtain the angular component of the 4-velocity vector 
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For isotropic curves ( 0=ds ) from (4.1) we find 
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     The only nonzero component of the associated vector of generalized forces (6.18) is 
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Photon dynamics in the Schwarzschild field

With radial motion ( 0С = ) it is equal to 

2

2
F

r


= − ,                                                                                                                                  (9.7) 

coinciding with the doubled force acting on the particle in Newtonian gravity. In view of (6.17), it 

corresponds to the passive gravitational mass of the photon 

0

2

2ph

p

h
m

c


= .                                                                                                                               (9.8) 

This result is consistent with a thought experiment on "weighing" a photon [13], in which it 

performs periodic motion in the vertical direction between two horizontal reflecting surfaces. 

     Considering the non-radial motion, in order to avoid the appearance of a fictitious component 

of momenta and force due to the sphericity of the coordinate system we use the Schwarzschild 

metric in rectangular coordinates (4.14). As for a material particle, we will consider the motion in 

the plane 0z =  corresponding to the value of the angular coordinate 0 =  in the spherical frame 

and look for the force acting on a light-like particle at a point ( , ,0,0)сt x . Since the 4-velocities 

are covariant vectors, then from the solutions of the equations of motion of a light-like particle 

(9.1), (9.4), (9.5) the components of the 4-velocity vector in a rectangular coordinate system can 

be accessed using transformations (4.16). In view of (4.12) and (4.17), its nonzero components 

take the form  
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Photon dynamics in the Schwarzschild field

Substituting these values and 
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in (6.18), we find the single non-zero component of the force vector acting on the light-like 

particle: 
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It is converted to  

2

2
2

2

1
8

1
16

rect

r
F

r
r






 
− 

 = −
 
− 

 

.                                                                                                             (9.12) 

The generalized force acting on a photon does not depend on the direction of its motion. This 

expression differs from the formula (9.7) corresponding to radial motion in spherical coordinates, 

which is a consequence of the non-covariance of the vector lF . However, in the limit of weak 

gravity ( r  ), these expressions converge asymptotically and give Newton's law of gravitation 

with a passive gravitational mass of a photon (9.8) equal to twice the mass of a material particle 

of equivalent energy. 



Photon dynamics in the Schwarzschild field

The gravitational field of the electromagnetic radiation flux is determined from the solution of the 

Einstein equations 

 
1

2

i i i

j j jR R T − =  

 for the electromagnetic field energy-momentum tensor 

 jk
k
i

kl
klij

EM
ij FFFFgT −=

4

1
 ,  

where ijF  is the electromagnetic field tensor. In case of weak gravity, it follows from analysis of 

acceleration of material particle that active gravitational mass of light beam or light packet is twice 

as much as similar mass of a rod of equivalent energy [14-16]. However, the gravitational 

interaction between electromagnetic radiation and material particles differs from the same 

interaction between photons.  

The equality of the active and passive gravitational masses of a photon means the fulfillment of 

Newton's 3rd law in the gravitational interaction of light-particle and material particles and the 

laws of conservation of energy and momentum. 



Summary

• The dynamics of particles in curvilinear space-time is considered using Lagrange mechanics. A correspondence is
established between the physical energy and momentum of a particle, determined from non-gravitational interactions, and
the contravariant vector of generalized momenta. The obtained dynamic equations include the rate of change of the energy-
momentum vector, the components of which express the energy and momentum acquired by the gravitational field when a
particle moves in it. This vector is an analogue of the pseudotensor used in conservation laws in tensor form when
considering the dynamics of an individual particle.

• Although the obtained generalized forces are not covariant quantities, in the limit of weak gravity, described by the
Schwarzschild metric, they express the Newtonian law of gravity with a passive mass of particles corresponding to the
active gravitational mass of moving point bodies and a light beam. The passive gravitational mass of a photon does not
depend on the direction of its motion. The same will be true for the passive gravitational mass of a material particle moving
along an unrestricted trajectory in Schwarzschild space-time. Coinciding with photon active gravitational mass interacting
with a material particle, photon passive gravitational mass is equal to twice the mass of a material particle having an energy
equivalent to a photon.

• We have considered a system of two closely spaced identical bodies moving in opposite directions, with low potential
energy compared to its kinetic energy. It can be described using a metric obtained by applying Lorentz transformations to
the Schwarzschild metric. Its gravitational effect on a material particle depends on the angle between the radius vector and
the line of bodies motion.

• Application of PESI and generalized Fermat's principle for a light-like particle in a gravitational field leads to the same
solution, which is an isotropic geodesic line. PESI defines a system of equations, which, in comparison with the result of
the generalized Fermat's principle, has one more equation. This makes it possible to uniquely identify the energy-
momentum vector of the particle.
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