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Introduction

◮ Einstein-Newcomb-de-Sitter (ENdS) space (Fig.1)
is a modification of the Einstein space made by
de Sitter [1] a few months after Einstein
published his first cosmological model [2] in 1917.
De Sitter used Newcomb’s elliptical space [3] and
found that, similarly to the Einstein space, it
equally satisfies Einstein’s field equations.

◮ This is a static space with its antipodal points
topologically identified (Fig.2). The topological
identification of antipodal points is a
mathematical abstraction. This can be
interpreted physically as a connection between
remote points via the Einstein-Rosen bridge
(Fig.3), also called “wormhole”.

◮ Distances are measured by the projective angle χ,
such that the distance along the spherical
“surface” is r′ = Rχ (Fig.1). The maximal
distance in Einstein’s spherical space corresponds
to χ = π, whereas in elliptical space it is
χ = π/2, as the points separated by χ = π
correspond to the same point in elliptical space.

Fig.1: Embedding diagram depicting elliptical space of
constant positive curvature (the blue sphere) with two
antipodal points topologically identified (the dark-blue
connection between two poles) and with a tangential
Euclidean space at the observer’s location (o). Distances
along the spatial coordinate (r′) are measured by the
projective angle χ (r′ = Rχ), where R−2 is the curvature.
The corresponding projective distance to the source (s) in
the Euclidean space is r = R tanχ.

Fig.2: Simplified embedding diagram of elliptical space
(curvature R−2 being ignored) highlighting the
mathematical identification of two antipodal (χ = π) points.
The identification is indicated by the vertical dashed line
connecting two points.

Fig.3: Embedding diagram depicting a possible physical
realisation of the topological connection between two distant
(antipodal) regions of space via a wormhole structure. Here
ro and rs are distances of the observer (o) and source (s)
from the wormhole’s far throat, opposite to the near throat in
the vicinity of the observer; and rg is the gravitational radius
of the wormhole.

Distances in the ENdS space

◮ De Sitter’s static cosmological model leads to the
redshift-distance relationship which is discrepant with the
observed standard-candles’ relationship between luminosity
distances and redshifts.
This mismatch is due to de Sitter’s overlook of the very
aspect of elliptical space which he regarded as the most
important aspect for modelling the physical world – namely,
the topological identification of antipodal points. He
completely neglected it and focused mainly on the
differences between the local and remote coordinate systems
(Fig.1) when relating distances to redshifts in his theory.

◮ But it is precisely this feature of identical antipodal points
that allows relating the cosmological redshift with the
time-dilatation effect inherent to the Schwarzschild solution
of Einstein field equations. As with any Schwartzschild
event horizon, there is an associated gravitational redshift,
which is calculable when we know the distances from the
horizon to the source and to the observer. Thus, in this
particular setup, the observed cosmological redshift is
gravitational by its nature.

◮ The Schwarzschild metric of the ENdS space leads to a
distance-to-redshift relationship dL(z) (see formulae below
Fig.4) which, in terms of accuracy, stays on equal footing
with the distance-to-redshift relationship derived from the
expanding-Universe cosmology based on the ΛCDM model.

Fig.4: Poincaré-map representation of distances in the ENdS
space shown in Fig.3 above. They range from observer’s
point o (χ = 0) to its antipodal point (χ = ±π). The
dot-dashed circle in this map represents the observer’s point
o itself, but in the form of its antipodal image seen in all 4π
directions from the observer. The smaller and larger dashed
circles represent, respectively, the near- and far-event
horizons of the wormhole. The distance of interest here is the
source-to-observer distance d = ro − rs which has to be
expressed as a function d(z) of source redshifts in order to
compare the observed standard-candle (type Ia supernova)
redshifts with their luminosity distances.

In this setup, we include unknown distances rs, ro, the
source-to-observer distance d = ro − rs, and the unknown
gravitational radius rg. Both the source and observer are
within the Schwartzschild metric, which corresponds to the
following spacetime interval in spherical coordinates (r, θ, φ):

ds2 = gttc
2dt2 − grrdr

2
− r2(dθ2 + sin2 θdϕ2),

where gtt = 1 −
rg

r
and grr = g−1

tt . The source’s redshift
with respect to the observer is
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√

go
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or, if we define rg = 1 as the distance unit,
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) (
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.

Then the source-to-observer distance reads

d(z) = ro−
[

1 − (1 − r−1

o )(1 + z)−2
]−1

[in units of rg],

which has to be multiplied by the scaling factor (1 + z)2 in
order to obtain the luminosity distance

dL(z) =
{

ro −
[

1 − (1− r−1

o )(1 + z)−2
]−1

}

(1 + z)2 ,

with one of the (1+z) factors accounting for the decrease in
the number of incoming photons due to time dilatation in the
Schwartzshild metric (the gtt metric coefficient) and another
accounting for the photon path distortion (the grr metric
coefficient). This is the required redshift-luminosity
relationship, permitting us to compare the ENdS-based
model with observational data.

Comparison with observations

◮ In order to compare the theoretical luminosity distances with observational data (e.g., distance moduli of the type Ia supernovae), the
distances need to be scaled and converted into magnitude values comparable with the observed source magnitudes.

◮ For our comparison, we use the well-calibrated sample of 1701 type Ia SNe, called “Pantheon+” [3,4]. The uncertainty of the parameters
of the standard ΛCDM cosmological model were recently substantially reduced using this “Pantheon+” sample [5]. For example, the
uncertainty in the H0 parameter was reduced to ±1 km/s/Mpc.

◮ Although the ΛCDM model was previously fitted to the “Pantheon+” sample, we repeat that fit here to ensure that our calculation
algorithms, when applied to both ΛCDM and ENdS, remain the same, in order to consistently intercompare these two models.

◮ Starting with the ΛCDM model, the luminosity distance as a function of redshift z is calculated in this model from
DL(z) = DA(z)(1 + z)2 ,

where the scaling factor (1 + z)2 is the same as in dL(z) equation of Fig.4, and DA is the angular diameter distance:

DA(z) =
c

H0

1

1 + z

z
∫
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√

1 + ΩM [(1 + z′)3 − 1]
,

as calculated for a flat cosmology (Ωk = 0). On the other hand, the luminosity distance is defined as the relationship between the
bolometric flux and luminosity of a source, which is encoded in the source distance moduli provided by the “Pantheon+” sample.

◮ If DL is expressed in Mpc, the distance modulus is

µΛCDM = 5 logDL + 25. (1)

Estimation of Pearson’s χ2

◮ By fitting the theoretical values to the observationally determined distance moduli of type Ia supernovae we can find the values of the
ΛCDM parameters. In the flat ΛCDM, there are two free parameters – H0 and ΩM – and a fixed parameter ΩΛ = 1 − ΩM . The fit

can be achieved by minimising Pearson’s χ2:
χ2 = ∆DTC−1∆D,

where C is the covariance matrix and ∆D is the vector of SN distance-modulus residuals

∆Di = µΛCDM(zi) − µi,

whose length is N = 1701 for the “Pantheon+” sample.

◮ Since here we are only interested in comparing the goodness of fit of two different cosmological models, we do not need to reach out for
the correct cosmological parameters via these fits. Thus, we can use a simplified statistic

χ2 = (diagCT∆D)2 =
N
∑

i=1

∆D2
i

σ2
µi

,

where σ2
µi

are the uncertainties of µi as determined from the diagonal of the covariance matrix

Fitting: ΛCDM

◮ For our comparison, we use µSH0ES from [5], which
are the corrected distance moduli where fiducial type
Ia SNe magnitudes M were determined from SH0ES
2022 Cepheid host absolute distances [6]. This
minimisation of χ2 gives

H0 = 72.429+0.116
−0.109 [km/s/Mpc];

ΩM = 0.389+0.010
−0.007 ,

which differ, as expected, from those based on the
full covariance matrix (H0 = 73.6 ± 1.1
[km/s/Mpc]; ΩM = 0.334 ± 0.018 [5]). This is
acceptable, as we are interested in the goodness of
fit characterised by the minimal value

χ2
ΛCDM = 881.15.

Fig.5: Distance moduli µ from the type Ia SNe “Pantheon+” sample
(red points) as a function of redshift z, with the minimal χ2-fitted
theoretical curves for the flat ΛCDM model (thin solid curve) and the
ENdS model (dashed curve).

Fitting: ENdS

◮ In the case of ENdS, besides its free parameter ro,
the expression (1) requires an extra free parameter,
such as sg (a scaling factor), in order to match the
theoretical µENdS with the observationally
determined µ from the type Ia SNe:

µENdS = 5 log(sgdL) + 25 ,

because dL is expressed in units of rg, and we need
to scale it to Mpc. Thus, the ENdS model, like the
flat ΛCDM, also has two free parameters,

◮ the χ2-minimised values of which are

ro − 1 = (9.91+0.02
−0.01) · 10

−8;

sg = (2.13+0.14
−0.13) · 10

10 [Mpc] ,

with the minimal χ2
ENdS = 887.56.

Fig.6: Differences ∆µ [in stellar magnitudes] between the ΛCDM fit
to the 1701 type Ia supernova Pantheon+ distance moduli (grey
points) and the χ2-fitting of the cosmological model based on the
ENdS space (dotted curve) to the same data. The latter curve is
presented in the form of differences from the ΛCDM fit, which, thus,
corresponds to the horizontal line at ∆µ = 0. The red dashed curve
shows a slightly better fit of the ENdS-based model to the type Ia SN
distance moduli when endowing this model with spacetime dynamics
(similar to the FLRW scaling factor a(t)). This fit results in the
minimised χ2 = 886.39 instead of 887.56 for the dotted curve.

Validation by GRB distance moduli

◮ Due to the lack of standard candle data for z > 3,
we can get a hint of what these data might be by
using a proxy to the standard candle data in the
form of gamma-ray burst distance moduli µGRB
obtained via the Amati relation [7]. As in Fig.5, the
ΛCDM-based theoretical distance moduli are
indicated by a thin solid curve, and the ENdS-based
distance moduli are indicated by a thicker dashed
curve.

◮ Without recalculating the model-parameter values
obtained in the previous step, we have estimated the
χ2 using the combined GRB+SNe data as a
validating data set for both models. The result of
this validation is the following:

χ2
ΛCDM = 2104.8;

χ2
ENdS = 2048.4.

The minimal χ2 for the ENdS-based model is
∼ 2.7% smaller than the minimal χ2 for the
ΛCDM model. This means that the static-universe
model based on the ENdS space is a better predictor
for high-redshifts observations than the
expanding-universe ΛCDM model.

Fig.7: Distance moduli µ from the “Pantheon+” type Ia SNe sample
(red points), together with the distance moduli from the GRB sample
(blue points) calibrated using the Amati relation. The solid and dashed
curves indicate the minimum-χ2-fitted theoretical curves for the flat
ΛCDM and ENdS models, respectively.

Conclusions

◮ The comparison between the standard ΛCDM cosmological model and the cosmological
model proposed here demonstrates that these two models are practically identical in terms
of their predictions for the distance moduli of the available standard candles (type Ia SNe)
within the redshift range 0 < z < 2.3.

◮ For higher redshifts, the model based on ENdS space predicts larger distance moduli (fainter
type Ia SNe) than those calculated within the framework of the standard ΛCDM
cosmological model. This theoretical prediction can be experimentally verified in the future,
as new discoveries of type Ia SNe with z ≃ 3 are expected within a few years by the
JWST.

◮ The 1998-discovery of type Ia SNe excessive dimming at z ≃ 1 was interpreted as evidence
in favour of dark energy (repulsive gravity or the Λ-term in Einstein’s equations). In physics,
dark energy is an unknown entity, and it can only be viably physical interpreted in terms of
vacuum energy. Experimental evidence from particle physics suggests that the vacuum
energy density (due to quantum fluctuations) must be large enough that it is discrepant by
the order of 10120 from what is currently deduced from type Ia SNe observations.

◮ In contrast, the competing model based on ENdS space discussed here exploits the
experimentally observed effect of gravitational redshift. In addition, the ENdS model
prediction can be appropriately validated in the near future via the expected aforementioned
JWST discoveries.
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