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Introduction Fitting: ACDM

Fig.1: Embedding diagram depicting elliptical space of

» Einstein-Newcomb-de-Sitter (ENdS) space (Fig.1) Consant postive urvstre (the los sphee) wih o

antipodal points topologically identified (the dark-blue

» For our comparison, we use ftsHoes from [5], which
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interpreted physically as a connection between
remote points via the Einstein-Rosen bridge
(Fig.3), also called “wormhole” .
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Fitting: ENdS
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» the x2-minimised values of which are
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The minimal x? for the ENdS-based model is

~ 2.7% smaller than the minimal x? for the
Comparison with observations ACDM model. This means that the static-universe
model based on the ENdS space is a better predictor
for high-redshifts observations than the

In order to compare the theoretical luminosity distances with observational data (e.g., distance moduli of the type la supernovae), the expa nding—universe ACDM model.
distances need to be scaled and converted into magnitude values comparable with the observed source magnitudes.

For our comparison, we use the well-calibrated sample of 1701 type la SNe, called “Pantheon+" [3,4]. The uncertainty of the parameters
of the standard ACDM cosmological model were recently substantially reduced using this “Pantheon+" sample [5]. For example, the
uncertainty in the Hy parameter was reduced to &1 km/s/Mpc.

Conclusions

Although the ACDM model was previously fitted to the “Pantheon+" sample, we repeat that fit here to ensure that our calculation

algorithms, when applied to both ACDM and ENdS, remain the same, in order to consistently intercompare these two models. » The comparison between the standard ACDM cosmological model and the cosmological

> Starting with the ACDM model, the luminosity distance as a function of redshift,z is calculated in this model from mOdel_ pI’OpOISEC_j here demon§trates that th_ese two mo_dels are praCtica”y identical in terms
Dp(z) = Da(2)(1 + 2)%, of their predictions for the distance moduli of the available standard candles (type la SNe)
where the scaling factor (1 4 z)? is the same as in d,(2) equation of Fig.4, and D4 is the angular diameter distance: within the redshift range 0< 2z < 2.3.

c 1 dz’

DA(Z):Hol_I_ZO/\/1_|_QM[(1_|_Z/)3_1]7

» For higher redshifts, the model based on ENdS space predicts larger distance moduli (fainter

o - - type la SNe) than those calculated within the framework of the standard ACDM
as calculgted for a flat c_osm_ology (Qx = 0). Qn _the other h_and, the Ium|n95|ty distance is defl_ned as the rflatlonshlp lietween the cosmological model. This theoretical prediction can be experimentally verified in the future,
bolometric flux and luminosity of a source, which is encoded in the source distance moduli provided by the “Pantheon+" sample. . : : e

as new discoveries of type la SNe with z ~ 3 are expected within a few years by the

> if Dy, is expressed in Mpc, the distance modulus is JWST.

ttacom = 5 log Dy, + 25. (1) P The 1998-discovery of type la SNe excessive dimming at z =~ 1 was interpreted as evidence
in favour of dark energy (repulsive gravity or the A-term in Einstein's equations). In physics,

dark energy is an unknown entity, and it can only be viably physical interpreted in terms of
vacuum energy. Experimental evidence from particle physics suggests that the vacuum

energy density (due to quantum fluctuations) must be large enough that it is discrepant by
the order of 1012Y from what is currently deduced from type la SNe observations.

Estimation of Pearson’s x?

> By fitting the theoretical values to the observationally determined distance moduli of type la supernovae we can find the values of the » In contrast, the com peting model based on ENdS Space discussed here exp|0|ts the
ACDM parameters. In the flat ACDM, there are two free parameters — Hy and €257 — and a fixed parameter Q25 = 1 — Qp. The fit eXperimenta”y observed effect of gravitationa| redshift. In addition, the ENdS model
can be achieved by minimising Pearson’s x2: prediction can be appropriately validated in the near future via the expected aforementioned
x* = AD'C'AD, JWST discoveries.

where C' is the covariance matrix and AD is the vector of SN distance-modulus residuals

AD; = pacom(z:) — iy
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