


Einstein-Cartan gravity

In general relativity (GR), the affine connection I‘Z—’; is constrained to be
symmetric.

Einstein—Cartan—Sciama—Kibble (EC) gravity removes this constraint by re-
garding the antisymmetric part of the connection, the torsion tensor
Skij = F[i";], as a variable. The total Lagrangian density is —iR\/—g + L,
where R is the Ricci scalar constructed from the connection and L., is the La-
grangian density of matter, as in GR.

Varying the Lagrangian with respect to the contortion tensor Cji = Sijk +
Sjki + Skji gives the Cartan equations:

. . . 1 .
S7., — S0 + S = —§H}S@-kj,

where S; = S* and s% = 2(§L,,/5C;;x)/+/—9 is the spin tensor.

Varying the Lagrangian with respect to the metric tensor g;; gives the Fin-
stein equations with the Ricci tensor. They can be put into a GR form with the
modified energy—momentum tensor:
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Spin fluid

Dirac spinors, representing fermions, couple to torsion through the covari-
ant derivative in the Lagrangian and therefore are the source of torsion. At
macroscopic scales, Dirac fields can be averaged and described as a spin fluid:

Sijk = sijuk, siju’ = 0.
The terms in the effective energy—momentum tensor that are quadratic in the

spin tensor do not vanish after averaging:
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where

1 .
s? = §sijsw >0 o ng

is the averaged square of the spin density.
The Einstein—Cartan equations for a spin fluid are therefore equivalent to
the GR Einstein equations for a perfect fluid with:

Eze—an?, ﬁ:p—an?,

where € and p are the thermodynamic energy density and pressure, ns is the
number density of fermions, and a = k(fic)?/32 with k = 87G/c.



Gravitational collapse of fluid sphere

A spherically symmetric gravitational field is given by the Tolman metric:
ds? = e’ 2dr? — AMTRIGR? — TR (492 + sin0 dp?),

where v, A, and p are functions of a time coordinate 7 and a radial coordinate
R. Coordinate transformations 7 — 7(7) and R — R(R) do not change the
form of the metric.

The components of the Einstein tensor corresponding to this metric that do
not vanish identically are:
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where a dot denotes differentiation with respect to ¢ and a prime denotes
differentiation with respect to R. 4



Gravitational collapse of fluid sphere

In the comoving frame of reference, the spatial components of the four-
velocity u* vanish. The nonzero components of the energy-momentum tensor
for a spin fluid, T}, = (€ + p)uyu, — Py, are: Ty = ¢, T} =T5 = T3 = —p.
The Einstein field equations GY = T} in this frame of reference are:

Gy =ké, G =G3=G3=—rp, Gp=0.
The covariant conservation of the energy-momentum tensor gives

: 2€ 25/
A+ 2= - 6” V,:_~P~’
€+ P €+ P

where the constants of integration depend on the allowed transformations 7 — 7
and R — R.

If the pressure is homogeneous (no pressure gradients), then p’ = 0, which
gives v/ = 0. Therefore, v = v(7) and a transformation 7 — 7 can bring v
to zero and ggog = €” to 1. The system of coordinates becomes synchronous.
Defining 7(7, R) = e*/? turns the metric into

ds® = 2dr? — MTAR? — 2 (7, R)(d6?* + sin?6 d¢?).

Every particle in a collapsing fluid sphere is represented by a value of R that
ranges from 0 (at the center) to Ry (at the surface).



Gravitational collapse of fluid sphere

The Einstein field equations reduce to
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Integrating the last equation gives
2
s (1)
1+ f(R)

where f is a function of R satisfying a condition 1 + f > 0 (see Landau &
Lifshitz, The Classical Theory of Fields). Substituting this relation into the

second field equation gives 2ri + 72 — f = —xpr?, which is integrated to
F(R
? = f(R) ( )—I{/ 2dr
r r

where F' is a positive function of R.



Gravitational collapse of fluid sphere

Substituting the last two equations into the first field equation gives a rela-
tion k(€ +p) = F'(R)/(r?*r"), leading to

R
2 = f(R) + ~ / ér®r'dR. (2)
0

If the mass of the sphere is M, then the Schwarzschild radius r, = 2GM/ c? of
the black hole that forms from the sphere is equal to

Ry
ry = HJ/ er2r'dR.
0

These two equations give 72(, Ry) = f(Ro)+7,/r(T, Ry). If 1o = r(0, Rp) is the
initial radius of the sphere and the sphere is initially at rest, then 7(0, Ry) = 0.
Consequently, the value of Ry is determined by

Substituting r = e#/2 and (1) into the first conservation law gives the first
law of thermodynamics for the effective energy density and pressure:

d ~ 2/ ~d 2.1\
E(er 'r)—l—pd—T(’r r')=0. 3)



Collapse of spin fluid sphere

If we assume that the spin fluid is composed of an ultrarelativistic matter
in kinetic equilibrium, then ¢ = h,T?% p = €¢/3, and ny = h,¢I°, where T is
the temperature of the fluid, hy = (72/30)(gp + (7/8)gs)k*/(Fic)?, and hy,s =
(€(3)/7%)(3/4)g¢k? /(he)?. For standard-model particles, g, = 29 and gr = 90.
The effective energy density and pressure are thus:

1
E=h,T*—ah?T% p= §h*T4 — ah?,T°.

Since the pressure has no gradient, the temperature only depends on 7, and
so does the energy density. This scenario describes a homogeneous sphere. The
first law of thermodynamics (3) gives

r#r'T = g(R), (4)

where ¢ is a function of R. Putting this relation into (2) gives
y R
i = f(R) + ;(h*TZL - Q’hifTEi)/ r*r'dR. (5)
0

Equations (4) and (5) give the function (7, R), which with (1) gives A(7, R).
The integration of (5) also contains the initial value 79(R). The metric therefore

depends on three arbitrary functions: f(R), g(R), and 7o(R).
N. Poptawski, Zh. Eksp. Teor. Fiz. 159, 448 (2021); arXiv:2008.02136. °



Collapse of spin fluid sphere

We seek a solution of (4) and (5) as
f(R) = —sin?R, 7(1,R) =a(7)sinR, (6)

where a(7) is a nonnegative function of 7. For this choice of functions, (4) gives
a®T3 sin? Rcos R = g(R), in which separation of the variables 7 and R leads to

g(R) = const - sin? Rcos R, a’T" = const.

Consequently, .
T H
T =ayTy, —+ — =0, 7
a aoTo, + . (7)

where ap = a(t = 0) and Ty = T'(7 = 0) are the values at the initial time, and
H = ca/a. Substituting (6) into (5) gives

K

a4+ 1= §(h*T4 — ah?,T7%a?, (8)

which has a form of the Friedmann equation for the scale factor a as a function

of the cosmic time 7 in a closed, homogeneous universe. The quantity H is the
Hubble parameter of this universe. Using (7) in (8) yields

hT44 h2T66
a2=—1+f( x OQO_M)_ 9)
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Collapse of spin fluid sphere

The relations (6) determine the constants:

1/2 3\1/2
sin Ry = (T—g) , a(0) = (T—O) :

To g

Substituting the initial values a(0) and a(0) = 0 into (8), in which the second
term on the right-hand side is negligible, gives Mc? = (4 /3)rgh, . This
relation indicates the equivalence of mass and energy of a fluid sphere with
radius 79 and determines 7j;. An event horizon for the entire sphere forms when
r(7, Ry) = 14, which is equivalent to a = (r,70)/2. Equation (9) has two turning
points, a = 0, if

ré  3mGhYhA,

T'g

~ ]2
]A3 Planck>
*
which is satisfied for astrophysical systems that form black holes.

Substituting (6) into (1) gives e*(™F) = q2. Consequently, the square of an

infinitesimal interval in the interior of a collapsing spin fluid is given by
ds* = c?dr* — a*(7)dR? — a*(7) sin? R(d6? + sin’0 d¢?).

This metric has a form of the closed Friedmann-Lemailtre-Robertson—Walker

metric and describes a part of a closed universe with 0 < R < Ry (like dust). "



Nonsingular bounce

Equation (9) can be solved analytically in terms of an elliptic integral of the
second kind, giving the function a(7) and then (7, R) = a(7) sin R:

a? = —1+

K (h*Téa‘é ozhingag)

y - (9)

a? a?

The value of a never reaches zero because as a decreases, the right-hand
side of (9) becomes negative, contradicting the left-hand side. The change of
the sign occurs when a < (r479)'/2, that is, after the event horizon forms. Con-
sequently, all particles with R > 0 fall within the event horizon but never reach
r = 0 (the only particle at the center is the particle that is initially at the cen-
ter, with R = 0). A singularity is replaced with a nonsingular bounce.
Nonzero values of a give finite values of T" and thus finite values of €, p, and ns.

After the bounce, the matter expands on the other side of the event horizon
as a new universe. This universe has a closed geometry (constant positive
curvature). The quantity a(7) is the scale factor. The universe is oscillatory:
the value of a oscillates between the two turning points. The value of Ry does
not change. A turning point at which @ > 0 is a bounce, and a turning point at
which @ < 0 is a crunch. This universe has an infinite number of identical cycles.

N. Poptawski, Astrophys. J. 832, 96 (2016).
G. Unger and N. Poptawski, Astrophys. J. 870, 78 (2019).
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Nonsingular bounce

The Raychaudhuri equation for a congruence of geodesics without four-
acceleration and rotation is df/ds = —0°/3 — 20% — R, utu”, where 0 is the
expansion scalar, o2 is the shear scalar, and R, is the Ricci tensor. For a spin
fluid, the last term in this equation is equal to —k(€ 4+ 3p)/2. Consequently,
the necessary and sufficient condition for avoiding a singularity in a black hole
is —k(€ +3p)/2 > 202. For a relativistic spin fluid, p = ¢/3, this condition is
equivalent to

2kan? > 202 + Ke. (10)

Without torsion, the left-hand side of (10) would be absent and this inequal-
ity could not be satisfied, resulting in a singularity. Torsion may provide a
necessary condition for preventing a singularity. In the absence of shear,
this condition would be also sufficient.

(Hehl, Trautman, Kopczynski, Tafel, Kuchowicz)

The presence of shear opposes the effects of torsion. The shear scalar o2
grows with decreasing a like ~ a9, which is the same power law as that for n?.
Therefore, if the initial shear term dominates over the initial torsion term in
(10), then it will dominate at later times during contraction and a singularity
will form. To avoid a singularity if the shear is present, nf must grow faster than
~ a~ % Consequently, fermions must be produced in a black hole during
contraction.
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Nonsingular bounce

The production rate of particles in a contracting or expanding universe can
be phenomenologically given by

1 d(\/— H?
C\/—¢ (\/;nf) :ﬁc4 ’ (11)

where ¢ = —a®sin® Rsin® 0 is the determinant of the metric tensor and 3 is a

nondimensional production rate. With particle production, the second equation

in (7) turns into
T H,/ BH?
I (i N 1). 12

T c (3C3hnfT3 (12)

Particle production changes the power law n¢(a):

ng ~ a_(3+5),

where § varies with 7. Putting this relation into (11) gives

4.3

o~ —a’a”.

During contraction, @ < 0 and thus § > 0. The term n? ~ a"572 grows
faster than 02 ~ o~ % and a singularity is avoided. Particle production and
torsion together reverse the effects of shear, generating a bounce.
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The universe in a black hole

The dynamics of the nonsingular, relativistic universe in a black hole is
described by equations (8) and (12):

£t (B )

%+ 1= = (hT* — ah2T%)a’ =
“r 3( ahnfT™)a”, T ¢ \3c3h,T3

where H = ca/a. These equations, with the initial conditions a(0) = (r3 /r,)!/?

and a(0) = 0, give the functions a(7) and T'(7).

The shear would enter the right-hand side of the first equation as an addi-
tional positive term that is proportional to a=*. When the universe becomes
nonrelativistic, the term h,T* changes into a positive term proportional to a~!.

The cosmological constant enters as a positive term proportional to a?.

Particle production increases the maximum size of the scale factor that is
reached at a crunch. Consequently, a new cycle is larger and lasts longer then
the previous cycle. Ry is given by sin® Ry = r,/a(0), where a(0) is the maxi-
mum scale factor in the first cycle. Since the maximum scale factor in the next
cycle is larger, the value of sin Ry decreases. As cycles proceed, Ry approaches
7 (the value for a completely closed universe).

A parent black hole creating a new, baby universe becomes an Einstein—
Rosen bridge (unidirectional wormhole) to that universe.
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If the Universe is closed, it is analogous to the 2-dimensional
surface of a 3-dimensional sphere. The Universe would be
mathematically the 3-dimensional hypersurface of a 4-
dimensional hypersphere.

The 3-dimensional space in which the balloon expands is not
analogous to any higher dimensional space. Points off the surface
of the balloon are not in the Universe in this analogy.

The balloon radius = scale factor a.
The Universe expands (Hubble law).

The Universe may be finite (closed)
or infinite (flat or open).

Image credit: One-Minute Astronomer 15




Inflation

During expansion (H > 0), if 8 is too big, then the right-hand side could
become positive: _
T H ( BH? 1)
T ¢ \3c3h, T3 .
In this case, the temperature would grow with increasing a, which would lead to

eternal inflation. Consequently, there is an upper limit to the production rate:
the maximum of the function (8H?)/(3¢*h,¢T>) must be lesser than 1.

If (BH?)/(3¢3h,¢T?) increases after a bounce to a value that is slightly lesser
than 1, then 7" would become approximately constant. Accordingly, H would be
also nearly constant and the scale factor a would grow exponentially, generating
inflation. Since the energy density would be also nearly constant, the universe
would produce enormous amounts of matter and entropy. Such an expansion
would last until the right-hand side of drops below 1. Consequently, inflation
would last a finite period of time. After this period, the effects of torsion weaken
and the universe smoothly enters the radiation-dominated expansion, followed
by the matter-dominated expansion.

Torsion and particle production can generate finite inflation without scalar
fields and reheating.
N. J. Poptawski, Phys. Lett. B 694, 181 (2010).
N. Poptawski, Astrophys. J. 832, 96 (2016).
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If quantum effects in the gravitational field near a bounce do not produce
enough matter, then the closed Universe reaches the maximum size and then
contracts to another bounce, beginning the new cycle. Because of matter
production, a new cycle reaches larger size and last longer than the previous

cycle.

When the Universe reaches a size at which the cosmological constant is
dominating, then it avoids another contraction and starts expanding to infinity.
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Every black hole creates a new universe?
Our Universe originated in a black hole?

Every black hole may create a new, closed, baby universe (Novikov, Pathria,
Hawking, Smolin, NP).

Accordingly, our Universe may be closed and may have born in the interior of
a black hole existing in a parent universe.

This hypothesis could solve the black hole information paradox: the
information goes through the Einstein-Rosen bridge to the baby universe on
the other side of the black hole’s event horizon.

The motion through an event horizon is unidirectional: it defines the past and
future. Time asymmetry at the event horizon may induce time asymmetry
everywhere in the baby universe and explain why time flows in one direction.
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The conservation law for total angular momentum in curved spacetime,
consistent with Dirac equation, requires torsion. The simplest theory with
torsion, Einstein-Cartan gravity, has the same Lagrangian as GR, but the
affine connection contains the torsion tensor, generated by spin.

Gravitational collapse of a sphere of a spin fluid creates an event horizon.
The matter within the horizon collapses to extremely high densities, at which
torsion acts like gravitational repulsion.

Classically, without shear, torsion prevents a singularity and replaces it with
a nonsingular bounce. With shear, torsion prevents a singularity if the
number of fermions increases during contraction via quantum particle
production.

Particle production during expansion produces enormous amounts of matter
and can generate a finite period of inflation. The resulting closed universe on
the other side of the event horizon may have several bounces. Such a
universe is oscillatory, with each cycle larger in size then the previous cycle,
until it reaches the cosmological size and expands indefinitely. 20



